ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ.

Наименование параметра Значение
Тема статьи: ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ.
Рубрика (тематическая категория) Геология

Две плоскости в пространстве могут располагаться либо параллельно друг другу, либо пересекаться.

Параллельные плоскости . В проекциях с числовыми отметками признаком параллельности плоскостей на плане служит параллельность их горизонталей, равенство заложений и совпадение направлений падения плоскостей: пл. S || пл. L - h S || h L , l S = l L , пад. I. (рис.3.11).

В геологии плоское однородное тело, сложенное какой-либо породой, называют слоем. Слой ограничен двумя поверхностями, верхнюю из которых называют кровлей, а нижнюю – подошвой. В случае если слой рассматривается на сравнительно небольшой протяженности, то кровлю и подошву приравнивают к плоскостям, получая в пространстве геометрическую модель двух параллельных наклонных плоскостей.

Плоскость S - кровля, а плоскость L - подошва слоя (рис.3.12, а ). В геологии кратчайшее расстояние между кровлей и подошвой называют истинной мощностью (на рис.3.12, а истинная мощность обозначена буквой H). Помимо истинной мощности, в геологии используют и другие параметры слоя горной породы: вертикальную мощность – H в, горизонтальную мощность – L, видимую мощность – H вид. Вертикальной мощностью в геологии называют расстояние от кровли до подошвы слоя, измеренное по вертикали. Горизонтальная мощность слоя есть кратчайшее расстояние между кровлей и подошвой, измеренное в горизонтальном направлении. Видимая мощность – кратчайшее расстояние между видимым падением кровли и подошвы (видимым падением называют прямолинœейное направление на структурной плоскости, т. е. прямую, принадлежащую плоскости). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, видимая мощность всœегда больше истинной. Следует отметить, что у горизонтально залегающих слоев истинная мощность, вертикальная и видимая совпадают.

Рассмотрим прием построения параллельных плоскостей S и L, отстоящих друг от друга на заданном расстоянии (рис.3.12, б ).

На плане пересекающимися прямыми m и n задана плоскость S. Необходимо построить плоскость L, параллельную плоскости S и отстоящую от нее на расстоянии 12 м (т. е. истинная мощность – H = 12 м). Плоскость L расположена под плоскостью S (плоскость S - кровля слоя, плоскость L - подошва).

1) Плоскость S задают на плане проекциями горизонталей.

2) На масштабе заложений строят линию падения плоскости S - u S . На перпендикуляре к линии u S откладывают заданное расстояние 12 м (истинную мощность слоя H). Ниже линии падения плоскости S и параллельно ей проводят линию падения плоскости L - u L . Определяют расстояние между линиями падения обеих плоскостей в горизонтальном направлении, т. е. горизонтальную мощность слоя L.

3) Отложив на плане горизонтальную мощность от горизонтали h S , параллельно ей проводят горизонталь плоскости L с той же числовой отметкой h L . Следует обратить внимание на то, что если плоскость L расположена под плоскостью S, то горизонтальную мощность следует откладывать в направлении восстания плоскости S.

4) Исходя из условия параллельности двух плоскостей, на плане проводят горизонтали плоскости L.

Пересекающиеся плоскости . Признаком пересечения двух плоскостей обычно служит параллельность на плане проекций их горизонталей. Линию пересечения двух плоскостей в данном случае определяют точками пересечения двух пар одноименных (имеющих одинаковые числовые отметки) горизонталей (рис.3.13): ; . Соединив полученные точки N и M прямой m , определяют проекцию искомой линии пересечения. В случае если плоскость S (A, B, C) и L(mn) заданы на плане не горизонталями, то для построения их линии пересечения t крайне важно построить две пары горизонталей с одинаковыми числовыми отметками, которые в пересечении и определят проекции точек R и F искомой прямой t (рис.3.14). На рис.3.15 представлен случай, когда у двух пересекающихся

плоскостей S и L горизонтали параллельны. Линией пересечения таких плоскостей будет горизонтальная прямая h . Стоит сказать, что для нахождения точки A, принадлежащей этой прямой, проводят произвольную вспомогательную плоскость T, которая пересекает плоскости S и L. Плоскость T пересекает плоскость S по прямой а (C 1 D 2), а плоскость L - по прямой b (K 1 L 2).

Точка пересечения прямых а и b , принадлежащих соответственно плоскостям S и L, будет общей для этих плоскостей: =А. Отметку точки А можно определить, проинтерполировав прямые a и b . Остается провести через A горизонтальную прямую h 2,9 , которая и является линией пересечения плоскостей S и L.

Рассмотрим еще один пример (рис.3.16) построения линии пересечения наклонной плоскости S с вертикальной плоскостью Т. Искомая прямая m определяется точками A и B, в которых горизонтали h 3 и h 4 плоскости S пересекают вертикальную плоскостью T. Из чертежа видно, что проекция линии пересечения совпадает с проекцией вертикальной плоскости: m º T. В решении геологоразведочных задач сечение одной или группы плоскостей (поверхностей) вертикальной плоскостью принято называть разрезом. Построенную в рассматриваемом примере дополнительную вертикальную проекцию прямой m называют профилем разреза, выполненного плоскостью T по заданному направлению.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ. - понятие и виды. Классификация и особенности категории "ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ." 2017, 2018.

Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей:
пусть заданы две плоскости Q 1 и Q 2:

А 1 х +B 1 y + C 1 z + D 1 =0

A 2 x + B 2 y + C 2 z + D 2 =0

Под углом между плоскостями понимается один из двугранных углов, образованных этими плоскостями.

Если плоскости перпендикулярны, то таковы же их нормали, т.е. . Но тогда ,т.е.

A 1 A 2 + B 1 B 2 + C 1 C 2 = 0. Полученное равенство есть условие перпендикулярности двух плоскостей.

Если плоскости параллельны, то будут параллельны и их нормали. Но тогда, как известно, координаты векторов пропорциональны: . Это и есть условие параллельности двух плоскостей.

Взаимное расположение прямых.

Угол между прямыми. Условия параллельности и перпендикулярности прямых.

Пол углом между этими прямыми понимают угол между направляющими векторами S 1 и S 2 .

Для нахождения острого угла между прямыми L 1 и L 2 числитель правой части формулы следует взять по модулю.

Если прямые L 1 и L 2 перпендикулярны , то в этом и только в этом случае имеем cos =0. следовательно, числитель дроби = 0, т.е. =0.

Если прямые L 1 и L 2 параллельны, то параллельны их направляющие векторы S 1 и S 2 . следовательно, координаты этих векторов пропорциональны: .

Условие, при котором две прямые лежат в одной плоскости:

=0.

При выполнении этого условия прямые либо лежат в одной плоскости, то есть либо пересекаются.

Взаимное расположение прямой и плоскости.

Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

Пусть плоскость задана уравнением Ах +By + Cz + D=0, а прямая L уравнениями . Углом между прямой и плоскостью называется любой из двух смежных углов, образованных прямой и ее проекцией на плоскость. Обозначим через угол между плоскостью и прямой.

.

Если прямая L параллельна плоскости Q, то векторы n и S перпендикулярны, а потому , т.е.

0 является условием параллельности прямой и плоскости.

Если прямая L перпендикулярна плоскости Q, то векторы n и S параллельны. Поэтому равенства

Являются условиями перпендикулярности прямой и плоскости.

Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости :

Рассмотрим прямую и плоскость Ах +By + Cz + D=0.

Одновременное выполнение равенств:

Ах 0 +By 0 + Cz 0 + D=0 являются условием принадлежности прямой плоскости.

Эллипс.

Геометрическое место точек, сумма расстояний от которых до двух фиксированных точек плоскости (обычно называемых фокусных) постоянна, называется эллипсом.

Если оси координат расположены так, что Ox проходит через фокусы F 1 (C,0) и F 2 (-C,0), а О(0,0) совпадает с серед отрезка F 1 F 2 , то по F 1 М+F 2 M получаем:

каноническое ур-ие эллипса ,

b 2 =-(с 2 -a 2).

а и b- полуоси эллипса., а-большая, b-меньшая.

Эксцентриситет . , (если а>b)

(если а

Эксцентриситет характеризует выпуклость эллипса.

У эллипса эксцентриситет находится: 0 .

Случай =0 возникает только тогда, когда с=0, а это есть случай окружности – это эллипс с нулевым эксцентриситетом.

Директрисы (D) Геометрическое место точек, отношение расстояний от которых до точки эллипса к расстоянию от этой точки эллипса до фокуса постоянно и равно величине , называется директрисами. .

Примечание: у окружности нет директрисы.

Гипербола.

Геометрическое место точек, модуль разности расстояний от которых до двух фиксированных точек плоскости постоянна, называется гиперболой.

Каноническое уравнение гиперболы:
, где .

Гипербола есть линия второго порядка.

Гипербола имеет 2 асимптоты: и

Гипербола называется равносторонней , если ее полуоси равны. (а=b). Каноническое уравнение:

Эксцентриситет – отношение расстояния между фокусами к величине действительной оси гиперболы:

Так как для гиперболы с>а, то эксцентриситет гиперболы >1.

Эксцентриситет характеризует форму гиперболы: . Эксцентриситет равносторонней гиперболы равен равен .

Директрисы – прямые .

Фокальные радиусы : и .

Есть гиперболы, которые имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола.

Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Расстояние от фокуса до директрисы – параметр параболы (p>0).-полуфокальный диаметр.

Парабола есть линия второго порядка.

М(х,у) – произвольная точка параболы. Соединим точку М с F, проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF=MN. По формуле расстояния между 2 точкам находим: => = =>

=>

Каноническое уравнение параболы:
y 2 = 2px.

Эллипсоид.

Исследуем поверхность, заданную уравнением:

Рассмотрим сечения поверхности с плоскостями, параллельными плоскости xOy. Уравнения таких плоскостей: z=h,где h – любое число. Линия, получаемая в сечении, определяется двумя ур-ниями:

Исследуем поверхность:

А) если то Линия пересечения поверхности с плоскостямиz=h не существует.

Б) если , линия пересечения вырождается в две точки (0,0,с), и (0,0,-с). Плоскости z = c, z = - c касается данной поверхности.

В) если , то уравнения можно переписать в виде: , как видно, линия пересечения есть эллипс с полуосями а1 = , b1 = . При этом, чем меньше h, тем больше полуоси. При н=0 они достигают своих наибольших значений. а1=а, b1=b. Уравнения примут вид:

Рассмотренные сечения позволяют изобразить поверхность как замкнутую овальную поверхность. Поверхность называется эллипсоидами., если какие-либо полуоси равны, трехосный эллипсоид превращается в эллипсоид вращения, а если а=b=c, то в сферу.

Гиперболоид и конус.

Зам.Дир по УВР_______________ Утверждаю

№_____ Дата 02.10.14

Предмет Геометрия

Класс 10

Тема урока: Взаимное расположение двух плоскостей. Признак параллельности плоскостей

Цели урока: познакомить с понятием параллельности плоскостей, изучить признак параллельности плоскости и свойства параллельных плоскостей

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Две плоскости называются параллельными, если они не имеют общих точек, т.е. если α = α (рис. 20).

Теорема 1. Через точку, не лежащую в плоскости, можно провести только одну плоскость, параллельную данной плоскости.

Доказательство. Пусть даны плоскость а и точка А, А а . В плоскости а возьмем две пересекающиеся прямые а и b : а , b , а = В (рис.21.) Тогда по теореме 1 (§2, п.2.1.) через точку А можно провести прямые а 1 и b 1 такие, что а 1 || а и b 1 || b Отсюда по аксиоме CIII существует единственная плоскость , проходящая через пересекающиеся прямые а 1 и b 1 . Теперь остается показать, что α , т.е. α = .

Пусть это не так, т.е. плоскости пересекаются по прямой с. Тогда по меньшей мере одна из прямых а или b не параллельна прямой с. Для определенности положим, что а с и а с = С.

Следовательно, a 1 с и также, как при доказательстве теоремы 2 из §2, имеем a 1 с= С, т.е. а 1 а = С.

Это противоречит тому, что а, || а . Поэтому α = α . Теорема доказана.

Теорема 2. Если пересечь две параллельные плоскости третьей плоскостью, то прямые их пересечения будут параллельными, т.е α , а = α , b = => а || b (рис. 22 ).

Итак, две плоскости в пространстве могут взаимно располагаться в двух вариантах:

    плоскости пересекаются по прямой;

    плоскости параллельны.

Признак параллельности плоскостей

Теорема 3. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Теорема 4. Отрезки параллельных прямых, ограниченных параллельными плоскостями, равны, между собой.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного. Стр 24 №87,88,89,90(1)

4.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.стр.22 п3 №90(2)

5.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

6.Этап рефлексии.

В силу аксиомы: две плоскости, имеющие общую точку, имеют общую прямую - возможны лишь два случая расположения плоскостей: 1) плоскости имеют общую прямую, т. е. пересекаются; 2) плоскости не имеют ни одной общей точки, такие плоскости называют параллельными. Существование параллельных плоскостей вытекает из следующего построения. Возьмем в плоскости (рис. 331) какие-либо две пересекающиеся прямые а и b.

Через точку М, не принадлежащую плоскости X, проведем прямые а и b, соответственно параллельные данным. Покажем, что плоскость содержащая эти прямые, параллельна плоскости . Действительно, если бы эти плоскости пересекались по некоторой прямой с, то эта прямая, принадлежа плоскости , пересекалась бы по крайней мере с одной из прямых а и такая точка пересечения была бы точкой пересечения одной из этих прямых с плоскостью . Между тем обе прямые по построению параллельны плоскости . Таким образом, предположение о пересечении плоскостей ведет к противоречию. Следовательно, плоскости параллельны. Отсюда следует

Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать